Student Name:
Student Number:
Dept. of Mechatronics Engineering
Final Exam, First Semester: 2014/2015

Course Title: Advanced Engineering Mathematics	Date: 12/2/2015
Course No: (640711) - Msc. Course	Time Allowed: 2 Hours
Lecturer: Dr. Mohammed Mahdi	No. of Pages: 2

Question 1:

(30 Marks)
Objectives: This question is about exponential matrix, state-space representation, and solution of dynamic equations using Laplace and Z transformations.

Choose three of the following

A) Given matrix $A==\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$. It is required to calculate A^{5} using Cayley Hamilton theorem. (10 Marks)
B) Solve the following difference equation using partial fraction and z-transform.
(10 Marks)
$x(k)-3 x(k-1)+2 x(k-2)=e(k)$, with $x(-2)=x(-1)=0$, and $e(k)=1$ for $k=0$, 1 and $e(k)=0$ for $e(k) \geq 2$.
C) Given A, B, C, and D state-space matrices it is required to sketch its block diagram and then derive a formula for transfer function.(10 Marks)
D) Solve the given differential equation using Laplace transform.(10 Marks)

$$
y^{\prime \prime}+y=t \text { with } y(0)=1, y^{\prime}(0)=-2
$$

Question 2:

Objectives: This question is about the solution of state space mathematical model.
Given the following transfer function: -

$$
G(s)=\frac{(s-1)}{(s+1)(s+2)}
$$

It is required to: -

1. Extract its canonical state space matrices.(5 Marks)
2. Use Sylvester's criterion to find its state transition matrix (${ }^{\mathrm{At}}$).(15 Marks)

Question 3:
Objectives: This question is about numerical solutions.

Choose two of the following

A) Solve $f(y)=y^{1000}$, using 2-iteration of Newton-Raphson iterative method take initial value for $\mathrm{y}=0.1$, calculate error relative for the last iteration. (10 Marks)
B) Apply $\underline{2}^{\text {nd }}$ order Lagrange interpolating polynomial for the data given in the table below to estimate f(-0.25).(10 Marks)

\mathbf{x}	-1.5	-0.75	0
$\mathrm{f}(\mathrm{x})$	-1.41	-0.9316	0

C) Find $\mathbf{y}(0.3)$ with step size $\mathbf{h}=0.1$ for $y=-2 y+3 e^{-4 t}$, with $\mathbf{y}(0)=1$ using Euler numerical integration method.(10 Marks)

Question 4:

Objectives: This question is about complex numbers and Fourier transform.
A) Given $z_{1}=3+2 j$ and $z_{2}=3-3 j$ it is required to express both complex numbers in polar form and find $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$ using both representations.
B) Find the constant Fourier coefficients (a_{0}) for the periodic functions given below : - (15 Marks)

(1)

(2)

(3)

